DIY

Bottle, Hoop, and Nail Trick

The hoop used is just the inner circle of an embroidery hoop. Get one for a couple dollars here: 
From Amazon: BUY NOW Wooden Hoop 

The science writer Martin Gardner has published many books of physics tricks and simple but amazing science experiments like the one in this video. Highly recommended. 
From Amazon: BUY NOW Martin Gardner's Science Magic: Tricks and Puzzles 

Bottle, Hoop, and Nail Trick: with some practice, a snap of the wrist removes the hoop and the nail falls straight into the bottle. Newton's 1st Law as seen in slow motion- a mass at rest tends to stay at rest. (Best to watch with sound/audio) Balancing the nail on the hoop ensures the nail is directly over the top of the bottle. The hoop is removed so quickly that it does not interact significantly with the sufficiently massive nail, and thus the nail remains over the mouth of the bottle so that gravity pulls it in. G4G Week repost- a favorite from Martin Gardner’s collections of physics tricks. 

Glow Trace Chaotic Pendulum Kit

Get this super nice, affordable, and fun to assemble kit here:
From KiwiCo: BUY NOW: Glow Pendulum Kit

Get amazing quatilty science kits delievered to your home- this glow pendulum is part of the Tinker Crate subscription. 
From KiwiCo: LEARN MORE: Tinker Crate Subscription

Glow Trace Chaotic Pendulum: this fun and amazing DIY kit features a UV diode to trace the intricate path of this double pendulum system on to a phosphorescent screen, revealing the physics of chaotic motion. It’s amazing that such complex motion can arise from a simple assembly of two pendulums, one attached to the end of the other. Chaotic motion, such as that observed here, is characterized by extreme sensitivity to initial starting conditions, tiny differences in how the system is released leads to dramatically different outcomes each time. 

 

Self-Propelled Homopolar Motor on Aluminum Foil Racetrack

I used neodymium disk magnets, small end = 1/2" diameter, Large end = 3/4" diameter. 
From eBay: BUY NOW Disk Magnets for Simple Motor 

Foil Runner Motor assembly diagram: 
Self-Propelled Homopolar Motor on Aluminum Foil Racetrack: A favorite DIY physics toy where disk shaped neodymium magnets supply the static magnetic field for this motor and become the wheels of a very simple vehicle with an AAA battery as the energy source. As soon as both ends make contact with the conducting aluminium foil an electric current will flow which in turn induces a magnetic field underneath the battery assembly. This induced field will then interact with the neodymium magnets on each end causing them to spin- a wonderful example of a motor with minimal components. The racetrack is a cardboard circle from a pizza box covered in kitchen foil.


Tumble Rings

I made this set of tumble rings from reading Martin Gardner's description in his famous mathematical recreations books- highly recommended: 
From Amazon: BUY NOW Knots and Borromean Rings by Martin GardnerDescribes the Tumble Rings 

From Amazon: BUY NOW Books on recreational math and puzzles by Martin Gardner Lots of physics and math toys in these pages! 

Tumble Rings: the links in this chain are connected in a special way such that the top ring appears to tumble to the bottom- a compelling illusion! 

Faraday Train

Here's the parts to make your own: 
From eBay: BUY NOW Neodymium Spheres 15mm 
From Amazon: BUY NOW Bare Copper Wire 10 gauge 

The wire used for the Faraday Train has to be bare- so make sure it does not have any kind of clear coating on it. The solid grounding wire sold at hardware stores works great. 

Here is a nice description of the Faraday Train and the physics of its propulsion

Faraday Train: two magnets, one battery, and a coil of bare copper wire are the simple essence of this self propelled craft. The magnets conduct electricity, thus when put in contact with the coil current will flow creating a solenoidal magnetic field in the vicinity of the battery, which in turn pushes on the magnets at each end of the battery moving the craft along. The spherical neodymium magnets used allows the craft to slide along the coil with minimal friction. 

Electromagnetic Levitation Module

Get this kit here (comes complete as shown in my video):
From engineDIY: BUY NOW: Magnetic Levitation Module

The featured sculture is by Bathsheba Grossman, affordable and beautiful math art available here:
From Etsy: BUY NOW: Soliton Sculpture

Electromagnetic Levitation Module: this engineered control system uses adjustable electromagnets (four copper coils) and and two Hall effect magnetic field sensors (held firm embedded in white silicone) to levitate an 5cm diameter neodymium magnet platform about 3 cm in mid-air. A feedback loop informed by the Hall effect sensors allows fine tuning of the magnetic field to exactly balance the pull of gravity, and is powered by a standard USB connection. The platform also rotates, perfect for showcasing one of my metal 3D printed mathematical sculptures by Bathsheba Grossman.


Centripetal Spheres

Just thread a rubber band through two of these drilled steel balls and you are ready to go! 
From Amazon: BUY NOW 
Drilled Spheres 

Centripetal Spheres: two ball bearings connected by a rubber band orbit each other as energy oscillates between elastic potential energy and rotation kinetic energy. Just wind up the rubber band and let go. When the rubber band has unwound the rotational inertia of the bearings winds it back up until it changes direction. The process repeats until the initial energy is dissipated through friction.

Mobius Zipper

If you like this kind of math exploration I highly recommend this book by Matt Parker: 
From Amazon: BUY NOW 
Things to Make and Do in the Fourth Dimension 


... and any of the books by Martin Gardner 
 
From Amazon: BUY NOW 
Recreational Math Books 

The parts to make this are inexpensive- a great craft for kids. Sew on the velcro dots for best results:

From Amazon: BUY NOW: Nylon Zippers, Velcro Dots

Möbius Zipper: exploring topology with a bisecting strip (a zipper with velcro ends). 0 twists creates a cylinder which simply gives two cylinders when split, ½ twist creates a Möbius strip- splitting down the center produces one long loop with with two full twists, 1 twist in a loop-splitting in half produces two interlocked Möbius loops! Just some of the curious properties concerning the Möbius strip, an unorientable, one sided surface, with only one boundary. 

Magnetic Suspension Sculpture

The DIY version can be assemebled with these parts. Steel wire of guage 10 or 12 should work well. 

From Amazon: BUY NOW: Quilting Hoop, Neodyumium Magnet, Steel Wire

Magnetic Hoops Suspension Sculpture: Steel circles are suspended by a magnet (black sphere) and held down to the base by a thin thread. The tops of the steel hoops, being ferromagnetic, become a north pole in the presence of the south pole end of the black magnet, so they are attracted to the black magnet, but repel each other. Made by Rathcon Inc. in 1970. Swipe to see my DIY version made from a quilting hoop, neodymium magnets, and some bailing wire. 


In-Feed Google

Electric Motor

Get this easy to assemble kit here: 
From Educational Innovations: BUY NOW Simplest Motor Kit 

Electric Motor: in its simplest form!- coil, magnet, and battery. The wire of the coil has an insulating coating- and this coating is carefully scrapped off one side on each end. When current passes through the coil it becomes an electromagnet and the permanent magnet repels it making it spin- as it turns the currents goes on and off depending if the copper posts are in contact with the bare wire (current on) or the still insulated wire (current off). I have motors with fewer parts- but they operate on more complex principles.

Vortex by Lava Lamp

A DIY kit by the makers of Lava Lamp, home experimentation set with booklet of ideas to try:

From Amazon: BUY NOW: Lava Lamp LED Vortex kit

From eBay: BUY NOW: Lava Lamp LED Vortex kit

Vortex Lamp: a simple whirlpool powered by a magnetic stirrer like those in a chemistry lab and lit by LEDs. A DIY kit by Lava Lamp brand- which comes with glitter and beads, but I found the water vortex alone was mesmerizing to watch. Note the intricately changing structure of the vortex in the slow motion close up. 


Centripetal Kinetic Toy

This "iBall" desk toy is no longer in producltion. Howerver, a similar version of this toy can be made from these components:

From Amazon: BUY NOW: two piece acrylic shell

From Amazon: BUY NOW: 1/4 inch ball bearings

Centripetal Kinetic Toy: seven rolling steel balls hug to the inside of the acrylic sphere given sufficient velocity. Here the balls are launched such that their orbits are in the same plane, and due to their angular momentum (and a torque due to gravity) the plane of rotation precesses like the axis of a spinning top until friction slows them down. This toy was made in 2007 (sadly no longer in production) and marketed under the name "iBall". 

Micro Hoverboard

If you want to make one of these you will need: 
1) some pyrolytic graphite (which can easily be sliced and carved): 
From eBay: BUY NOW Pyrolytic Graphite 
2) some neodymium magnets: the racetrack magnets are a bit pricey though! 
From eBay: BUY NOW Diamagnetic Levitation Kit
3) shrink and print this image on medium weight paper, 
and 4) cut and assemble! 

Micro-Hoverboard: diamagnetic levitation technology- although Marty McFly would have to be three inches tall to ride this hoverboard. Made from printed paper and pyrolytic graphite with concentric circular neodymium magnet array. The magnetic rings alternate between north and south magnetic poles in just the right way to trap this special type of graphite. Pyrolytic graphite has strong diamagnetic properties such that it develops an opposite (but weak)magnetic field when in the presence of a magnetic field from another source. Swipe to see the graphite pieces levitating individually.

Light Pipe Sculpture

Get an affordable pre-bent light pipe demo here:
From Amazon: BUY NOW: Light Pipe Demo

Blue laser pointers (445nm) available here:
From eBay: BUY NOW: Blue Laser
but any color laser will work. 

Make your own abstract light pipe sculpture, an inexpesive heat gun is the only needed tool:
Materials from eBay: BUY NOW: Acrylic Rod
Tool from Amazon: BUY NOW: Heat Gun

Light Pipe Sculpture: internal reflection constrains most of the laser light to propagate along the bent acrylic rod- the physics of fiber optics. This abstract sculpture was created by applying a heat gun to a 3/8” diameter acrylic rod. The laser pointer used here is blue at a wavelength of 445nm.


Spinner Fidget Trick

Click this link for a gyroscope that will perform the same trick! 

Spinner Fidget Trick: defy gravity!- a trick to try with a fidget spinner you might have in a drawer somewhere. For the trick to work the spinner needs to have most of its mass far from the center (not all spinners will work)- and you may need to drill a hole down its center to attach an axle. This Spinpal spinner has three heavy steel spheres placed to maximize rotational inertia, that along with precision bearings, gives this fidget toy properties of a quality gyroscope. Give the spinner significant RPMs and it will suspend from, and precess around, a string! Thanks to @spinpal for sending me this a while back. 

In-Feed Google 2

Curie Point Heat Engine

This DIY project is pretty easy to build. One half of one of these inexpensive magnetic necklace clasps will work well for the heated magnet. 
From Amazon: BUY NOW: magnets for curie point engine

A full engine is available from my friends at Grand Illusions Ltd: 
From GI LTD: BUY NOW: Curie Engine 

Curie Point Heat Engine: when the magnet on the end of the wire heats up to a particular temperature (the Curie point) its magnetic field is temporarily lost until it cools. This engine design uses a second magnet to pull the swinging magnet back into the heat source once the magnetic field is reestablished. Repetition of this process creates mechanical motion as long as the heat source is fueled.